Contents

<table>
<thead>
<tr>
<th>[Keynote Speaker Session 1] Estimation and Comparison of Conditional Moment Models</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation and Comparison of Conditional Moment Models ((Siddhartha Chib))</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Session 1a] Innovative Bayesian Approaches for High-dimensional Variable Selection</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Selection in Bayesian Nonparametric Models for High-dimensional Confounding ((Michael J. Daniels))</td>
<td>2</td>
</tr>
<tr>
<td>Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models with an Application to a Biostatistics Dataset ((Marco A. R. Ferreira))</td>
<td>2</td>
</tr>
<tr>
<td>Bayesian Nonparametric Differential Analysis for Dependent Multigroup Data with Application to DNA Methylation Analyses ((Subharup Guha))</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Session 1b] Developments in Small Area Estimation (Chiba University SAE Session)</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Area Estimation for Grouped Data ((Yuki Kawakubo))</td>
<td>4</td>
</tr>
<tr>
<td>Estimation and Inference for Area-wise Spatial Income Distributions from Grouped Data ((Genya Kobayashi))</td>
<td>5</td>
</tr>
<tr>
<td>Bayesian Approach to Lorenz Curve from Time Series Grouped Data ((Yuta Yamauchi))</td>
<td>5</td>
</tr>
<tr>
<td>Corrected Empirical Bayes Confidence Region in a Multivariate Fay-Herriot Model ((Tsubasa Ito))</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Session 1c] New Developments in Bayesian Forecasting and Finance</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Network Analysis of Systemic Risk in Financial Markets ((Mike K.P. So))</td>
<td>7</td>
</tr>
<tr>
<td>Intraday Range-based Stochastic Volatility Models with Application to the Japanese Stock Index ((Toshiaki Watanabe (presenting) and Jouchi Nakajima))</td>
<td>7</td>
</tr>
<tr>
<td>Bayesian Dynamic Fused LASSO ((Kaoru Irie))</td>
<td>8</td>
</tr>
<tr>
<td>Bayesian Indicator Approach for Variable Selection in Gaussian Process ((Ray-Bing Chen))</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Session 2a] Bayesian Modeling of Networks and Scalable Inference</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling Networks in the Presence of Informative Community Structure ((Alexander Volfovsky))</td>
<td>9</td>
</tr>
</tbody>
</table>
Session 2b | Advances in Dynamic Modelling and Computation

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent Bayesian Joint Variable and DAG Selection in High Dimensions (Xuan Cao)</td>
<td>10</td>
</tr>
<tr>
<td>Inference You Can Trust: A New Approach to Boosting (Trevor Campbell)</td>
<td>10</td>
</tr>
<tr>
<td>A Bayesian Model for Sparse Graphs with Flexible Degree Distribution and Overlapping Community Structure (Juho Lee)</td>
<td>11</td>
</tr>
</tbody>
</table>

Session 2c | Bayesian Joint Modeling

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Multivariate Factor Analysis for Evaluating the Causal Impact of Policy Interventions (Silvia Montagna)</td>
<td>12</td>
</tr>
<tr>
<td>Particle Learning for Stochastic Volatility with Leverage (Naoki Awaya)</td>
<td>13</td>
</tr>
<tr>
<td>Large-Scale Dynamic Predictive Regressions (Kenichiro McAlinn)</td>
<td>13</td>
</tr>
<tr>
<td>Randomization Tests of Causal Effects Under General Interference (David Puelz)</td>
<td>14</td>
</tr>
</tbody>
</table>

Session 3b | Recent Developments in High-dimensional Bayesian Inference

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust Bayesian Regression with Shrinkage Priors (Shonosuke Sugawara)</td>
<td>17</td>
</tr>
<tr>
<td>The Berry-Esseen Type Bound for the Bernstein-von Mises Theorem in Moderately High Dimensions (Keisuke Yano)</td>
<td>17</td>
</tr>
<tr>
<td>Singular Value Shrinkage Priors for Bayesian Prediction (Takeru Matsuda)</td>
<td>18</td>
</tr>
<tr>
<td>The Laplace Approximation to a High Dimensional Model (Yoichi Miyata)</td>
<td>18</td>
</tr>
</tbody>
</table>

Session 3c | Marginal Likelihoods: Theory, Computation, and Applications

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Comparing Asset Pricing Models (Lingxiao Zhao)</td>
<td>19</td>
</tr>
<tr>
<td>A New Monte Carlo Method for Estimating Marginal Likelihoods (Lynn Kuo)</td>
<td>20</td>
</tr>
<tr>
<td>Inflated Density Ratio and Its Variation and Generalization for Computing Marginal Likelihoods (Yu-Bo Wang)</td>
<td>20</td>
</tr>
<tr>
<td>Monte Carlo Methods for Computing Marginal Likelihoods with Applications to Item Response Theory Models (Ming-Hui Chen)</td>
<td>21</td>
</tr>
</tbody>
</table>

Tutorial Session 1 | Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models (Dipak K. Dey)</td>
<td>22</td>
</tr>
</tbody>
</table>
Bayesian Learning in High-dimensional State-space Models (Hedibert Freitas Lopes) .. 23

A Semiparametric Mixture Method for Local False Discovery Rate Estimation from Multiple Studies (Woncheol Jang) .. 24

Variational Inference for the Levy Adaptive Regression with Multiple Kernels (Seongil Jo) .. 24

Analysis of Longitudinal Binary and Survival Time Data Using Joint Models with General Random Effects Covariance Matrix (Keunbaik Lee) .. 25

Post-processed Posteriors for Band Structured Covariances (Jaeyong Lee) .. 25

Use of Two Non-informative Priors in an Empirical Bayes Estimator of Multiple Poisson Means (Takemi Yanagimoto and Toru Ogura) .. 26

Bayesian Methods for Accelerated Materials Discovery (Ryo Yoshida) .. 27

High-dimensional Motion Segmentation with Semi-Markov Latent Gaussian Processes (Daichi Mochihashi) .. 28

Quantile Forecasting Based on a Multivariate Hysteretic Autoregressive Model with GARCH Errors and Time-varying Correlations (Cathy W.S. Chen) .. 30

Bayesian Analysis of Realized Matrix-Exponential GARCH Models (Manabu Asai) .. 31

A Generalized Threshold Stochastic Volatility Model Incorporating with Realized Measures (Feng-Chi Liu) .. 31

Nonparametric Bayesian Two-part Random Effects Model for Longitudinal Semi-continuous Data Analysis (Yeongseung Chung) .. 32

Use of Model Reparametrization to Improve Variational Bayes (Linda S. L. Tan) .. 33

Nonparametric Bayesian Modeling in Government Statistics: Recent Developments in Imputation, Editing, and Data Protection (Hang J. Kim) .. 33

Estimation and Prediction for Spatial Generalized Linear Mixed Models (Vivekananda Roy) .. 34

A Bayesian Approach for Spatial Cluster Detection of Regression Coefficients (Huiyan Sang) .. 35
<table>
<thead>
<tr>
<th>Session 5c</th>
<th>Recent Advances in Bayesian Predictive Inference</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse Minimax Optimality of Bayes Predictive Density Estimates from Clustered Discrete Priors (Gourab Mukherjee)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Asymptotic Properties of Bayes Estimators Based on Shrinkage Priors for Curved Exponential Families (Michiko Okudo)</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Dual Roles of Maximizing Likelihood and Shannon Entropy under Alpha-divergence Loss (Toshio Ohnishi)</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 6a</th>
<th>Monte Carlo Methods for Complicated Target Distributions</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Markov Chain Monte Carlo Method with Heavy-tailed Target Distributions (Kengo Kamatani)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Bayesian Inference for Intractable Likelihood Models (Krzysztof Latuszyński)</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler (Daniel Paulin)</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 6b</th>
<th>New Advance in Bayesian Theorem and Nonparametric Bayesian Methods</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Model Selection for Nonparametric Problems (Debdeep Pati)</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Bayesian Nonparametric Clustering Analysis for Single Cell RNA Sequencing Data (Mengjie Chen)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Bayesian Estimation of Sparse Spiked Covariance Matrices in High Dimensions (Yanxun Xu)</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Bayesian Generative Training is Robust (Chao Gao)</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 6c</th>
<th>Bayesian Statistics and Marketing</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayesian Estimation of Population Moments and Parameters in Biased Sampling (Yuya Shimizu)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Modeling Heterogeneous Impacts of Mental Accounting and Household Stock to Consumers Inter-shopping Duration (Kazuhiro Miyatsu)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Dynamic Two-Stage Modeling for Category-Level and Brand-Level Purchases with a Bayes Inference (Kei Miyazaki)</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutorial Session 2</th>
<th>Discrete Random Structures and Bayesian Nonparametrics</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete Random Structures and Bayesian Nonparametrics (Igor Prünster)</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>
We provide a Bayesian analysis of models in which the unknown distribution of the outcomes is specified up to a set of conditional moment restrictions. The prior-posterior analysis is made possible by taking advantage of the nonparametric exponentially tilted empirical likelihood function, constructed to satisfy a sequence of unconditional moments, obtained from the conditional moments by an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). We show that subject to a growth rate condition on the number of approximating functions, the posterior distribution satisfies the Bernstein-von Mises theorem, even when the set of conditional moments contain misspecified moment conditions. Large-sample theory for comparing different conditional moment models shows that the marginal likelihood criterion selects the model that is less misspecified, that is, the model that is closer to the unknown true distribution in terms of the Kullback-Leibler divergence. Examples to illustrate the framework and results are provided.

This is joint work with Minchul Shin and Anna Simoni.
Variable Selection in Bayesian Nonparametric Models for High-dimensional Confounding
Michael J. Daniels
University of Florida

Enriched Dirichlet processes (EDPs) provide very flexible conditional distributions that are powerful for modeling the distribution of outcomes given confounders for causal inference. However in most applications, many of the potential confounders are not true confounders. Further complicating any sort of variable selection is that such flexible models, which detect non-additivity and non-linearity in default ways, do not correspond to a single parameter (e.g., being zero) for each potential confounder. As such, we propose a backward selection algorithm that identifies covariates potentially unrelated to the outcome and then use a Bayesian model selection statistic to decide whether to remove the variable. The procedure is explored via simulations and applied to a real dataset.

Hyper Nonlocal Priors for Variable Selection in Generalized Linear Models with an Application to a Biostatistics Dataset
Marco A. R. Ferreira
Virginia Polytechnic Institute and State University

We propose two novel hyper nonlocal priors for variable selection in generalized linear models. To obtain these priors, we first derive two new priors for generalized linear models that combine the Fisher information matrix with the Johnson–Rossell moment and inverse moment priors. We then obtain our hyper nonlocal priors from our nonlocal Fisher information priors by assigning hyperpriors to their scale parameters. As a consequence, the hyper nonlocal priors bring less information on the effect sizes than the Fisher information priors, and thus are very useful in practice.
whenever the prior knowledge of effect size is lacking. We develop a Laplace integra-
tion procedure to compute posterior model probabilities, and we show that under
certain regularity conditions the proposed methods are variable selection consistent.
We also show that, when compared to local priors, our hyper nonlocal priors lead to
faster accumulation of evidence in favor of a true null hypothesis. Simulation studies
that consider binomial, Poisson, and negative binomial regression models indicate
that our methods select true models with higher success rates than other existing
Bayesian methods. Furthermore, the simulation studies show that our methods lead
to mean posterior probabilities for the true models that are closer to their empirical
success rates. Finally, we illustrate the application of our methods with an analy-
sis of the Pima Indians diabetes dataset. This is joint work with Ho-Hsiang Wu,
Tieming Ji and Mohamed Elkhouly.

Bayesian Nonparametric Differential Analysis for
Dependent Multigroup Data with Application to DNA
Methylation Analyses
Subharup Guha
University of Florida

Cancer ‘omics datasets involve widely varying sizes and scales, measurement
variables, and correlation structures. An overarching scientific goal in cancer re-
search is the development of general statistical techniques that can cleanly sift the
signal from the noise in identifying genomic signatures of the disease across a set
of experimental or biological conditions. We propose BayesDiff, a nonparametric
Bayesian approach based on a novel class of first order mixture models, called the
Sticky Poisson-Dirichlet process or multicuisine restaurant franchise. The BayesDiff
methodology flexibly utilizes information from all the measurements and adaptively
accommodates any serial dependence in the data, accounting for the inter-probe
distances, to perform simultaneous inferences on the variables. The technique is
applied to analyze the motivating DNA methylation gastrointestinal cancer dataset,
which displays both serial correlations and complex interaction patterns. In simu-
lation studies, we demonstrate the effectiveness of the BayesDiff procedure relative
to existing techniques for differential DNA methylation. Returning to the motivat-
ing dataset, we detect the genomic signature for four types of upper gastrointestinal
cancer. The analysis results support and complement known features of DNA
methylation as well as gene association with gastrointestinal cancer. This is joint
work with Chiyu Gu and Veera Baladandayuthapani.
Small Area Estimation for Grouped Data

Yuki Kawakubo
Chiba University

This paper proposes a new model-based approach to small area estimation for grouped data or frequency data, which is often available from sample surveys. Grouped data contains information on frequencies of some pre-specified groups in each area, for example the numbers of households in the income classes, and thus provides more detailed insight about small areas than area level aggregated data. A direct application of the widely used small area methods, such as the Fay–Herriot model for area level data and nested error regression model for unit level data, is not appropriate since they are not designed for grouped data. The newly proposed method assumes that the unobserved unit level quantity of interest follows a linear mixed model with the random intercepts and dispersions after some transformation. Then the probabilities that a unit belongs to the groups can be derived and are used to construct the likelihood function for the grouped data given the random effects, which is in the form of the multinomial likelihood. The unknown model parameters (hyperparameters) are estimated by a newly developed Monte Carlo EM algorithm using an efficient importance sampling. The empirical best predicts (empirical Bayes estimates) of small area parameters can be calculated by a simple Gibbs sampling algorithm. The numerical performance of the proposed method is illustrated based on the model-based and design-based simulations. In the application to the city level grouped income data of Japan, we complete the patchy maps of the Gini coefficient as well as mean income across the country.
Estimation and Inference for Area-wise Spatial Income Distributions from Grouped Data

Genya Kobayashi
Chiba University

Estimating income distributions plays an important role in the measurement of inequality and poverty over space. The existing literature on income distributions predominantly focuses on estimating an income distribution for a country or a region separately and the simultaneous estimation of multiple income distributions has not been discussed in spite of its practical importance. In this work, we develop an effective method for the simultaneous estimation and inference for area-wise spatial income distributions taking account of geographical information from grouped data. Based on the multinomial likelihood function for grouped data, we propose a spatial state-space model for area-wise parameters of parametric income distributions. We provide an efficient Bayesian approach to estimation and inference for area-wise latent parameters, which enables us to compute area-wise summary measures of income distributions such as mean incomes and Gini indices, not only for sampled areas but also for areas without any samples thanks to the latent spatial state-space structure. The proposed method is demonstrated using the Japanese municipality-wise grouped income data. The simulation studies show the superiority of the proposed method to a crude conventional approach which estimates the income distributions separately.

Bayesian Approach to Lorenz Curve from Time Series Grouped Data

Yuta Yamauchi
University of Tokyo

This study is concerned with estimating the inequality measures associated with the underlying hypothetical income distribution from the times series grouped data on the Lorenz curve. We adopt the Dirichlet pseudo likelihood approach where the parameters of the Dirichlet likelihood is set to the difference in the Lorenz curve of the hypothetical income distribution for the consecutive income classes and propose a state space modelling approach which combines the parameters of the income distribution through a time series structure after some transformation. Furthermore, the information on the sample size in each survey is introduced into the nuisance Dirichlet precision parameter to take into account the variability from the sampling. From the simulated data and real data on Japanese income survey, it is confirmed that the proposed model produces more stable estimates on the inequality measures.
In the small area estimation, the empirical best linear unbiased predictor (EBLUP) in the linear mixed model is useful because it gives a stable estimate for a mean of a small area. For measuring uncertainty of EBLUP, much of research is focused on second-order unbiased estimation of mean squared prediction errors in the univariate case. In this talk, I consider the multivariate Fay-Herriot model where the covariance matrix of random effects is fully unknown, and obtain a confidence region of the small area mean that is based on the Mahalanobis distance centered around EBLUP and is second order correct. A positive-definite, consistent and second-order unbiased estimator of the covariance matrix of the random effects is also suggested. The performance is investigated through simulation study.
Bayesian Network Analysis of Systemic Risk in Financial Markets

Mike K.P. So
Hong Kong University of Science and Technology

Analyzing systemic risk in financial markets has been an active research area in financial econometrics, risk management and big data analytics. This paper proposes an approach based on network analysis to study the interrelationship between financial companies. We develop statistical models to understand how the financial network, and thus systemic risk, changes over time. We adopt Bayesian inference methods to estimate the financial network, do network prediction and use listed companies in Hong Kong to illustrate our idea.

Intraday Range-based Stochastic Volatility Models with Application to the Japanese Stock Index

Toshiaki Watanabe (presenting) and Jouchi Nakajima
1Hitotsubashi University; 2Bank for International Settlements

Realized stochastic volatility (RSV) models, where the true volatility is modelled jointly with a realized measure (RM) of volatility taking account of the bias in the RM, are extended for the analysis of high-frequency intraday volatility. The proposed model consists of the persistent autoregressive stochastic volatility process, seasonal components of the intraday volatility patterns, and correlated jumps in prices and volatilities. The range of the logarithmic prices within each intraday time interval is used as a RM in the proposed model. A Bayesian method for the analysis of this model is developed using Markov chain Monte Carlo (MCMC) with the exact multi-move sampler for the SV process. Using this method, the proposed model is applied to the 5-minute returns of Nikkei 225 index. It is also examined whether the intraday range-based RSV model improves the predictive ability of volatility compared with the intraday SV model without the range information and commonly-used models for daily realized volatility.
Bayesian Dynamic Fused LASSO
Kaoru Irie
University of Tokyo

In the context of dynamic modeling, a special case of Bayesian fused LASSO is considered. It is crucial in the high-dimensional settings to address two types of sparsity – sparsity in predictors and dynamics of time-varying parameters – which implies the use of two penalties that shrinks the current state variable to zero and its previous value. This defines a new Markov process that is proven stationary and reversible. The transition density of this process is decomposed into two parts, the synthetic likelihood and prior, and is realized as the posterior of a conditionally dynamic linear model. As the prior for state variables in state space models, this CDLM representation enables the efficient posterior and predictive analysis by Markov chain Monte Carlo and other statistical methods. Through the posterior analysis of real and simulated data, the state space models with the new Markov process prior are extensively compared with the DLMs of Gaussian and double-exponential state evolutions to illustrate that the two different shrinkage effects can penalize the volatile behavior of time-varying state variables while aggressively shrinking the state variables toward zero to eliminate the contribution of noisy predictors.

Bayesian Indicator Approach for Variable Selection in Gaussian Process
Ray-Bing Chen
National Cheng Kung University

In this work, we are interested in the Bayesian variable selection problems in Gaussian process models. Here we do not only focus on the mean regression functions but also take the covariate structure into account. Thus a variable is active if the corresponding regression coefficient is not zero or its hyperparameter in the covariate structure is not zero. To accomplish our goal, we first treat the regression coefficient and the hyperparameter in the covariate structure as a group and an indicator is added into the model to denote the status of this group. Thus the active variables can be identified based on the posterior samples of the indicators. The performances of the proposed Bayesian selection approach are illustrated by the simulations and the real applications in Computer Experiments.
Modeling Networks in the Presence of Informative Community Structure

Alexander Volfovsky
Duke University

The study of network data in the social and health sciences frequently concentrates on detecting community structures among nodes and associating covariate information to edge formation. A popular class of latent space network models captures community structure by learning an embedding of the network in Euclidean space. However in much of this data, it is likely that the effects of covariates on edge formation differ between communities (e.g. age might play a different role in friendship formation in communities across a city). This information is lost by ignoring explicit community membership. In this work we introduce an extension of the additive and multiplicative effects latent space network model where coefficients associated with certain covariates can depend on the latent community membership of the nodes. We show that ignoring such structure can lead to either over- or under-estimation of covariate importance to edge formation and propose a Markov Chain Monte Carlo approach for simultaneously learning the latent community structure and the community specific coefficients.
Consistent Bayesian Joint Variable and DAG Selection in High Dimensions

Xuan Cao
University of Cincinnati

Motivated by the eQTL analysis, we consider joint sparse estimation of the regression coefficient matrix and the error covariance matrix in a high-dimensional multivariate regression model for studying conditional independence relationships among a set of genes and discovering possible genetic effects. The error covariance matrix is modeled via Gaussian directed acyclic graph (DAG) and sparsity is introduced in the Cholesky factor of the inverse covariance matrix, while the sparsity pattern in turn corresponds to specific conditional independence assumptions on the underlying variables. In this talk, we consider a flexible and general class of these ‘DAG-Wishart’ priors with multiple shape parameters on the space of Cholesky factors and a spike and slab prior on the regression coefficients. Under mild regularity assumptions, we establish the joint selection consistency for both the variable and the underlying DAG when both the number of predictors and the dimension of the covariance matrix are allowed to grow much larger than the sample size. We demonstrate our theoretical results through a marginalization-based collapsed Gibbs sampler that offers a computationally feasible and efficient solution for exploring the sample space.

Inference You Can Trust: A New Approach to Boosting

Trevor Campbell
University of British Columbia

Variational inference algorithms are well-known to be computationally tractable for large-scale models and data; but they are equally well-known to provide unreliable results and underestimate posterior uncertainty. In order for variational methods to be competitive with Markov Chain Monte Carlo (MCMC) and trusted in the statistical domain, they must come with rigorous finite-data guarantees. This talk will focus on boosting methods, i.e., those that incrementally build complex variational approximations up from simple component distributions. After reviewing some recent exciting developments in the area, the talk will introduce a new approach to variational boosting that comes with rigorous theoretical convergence guarantees. Unlike previous approaches, the method requires no ad-hoc regularization. Experiments on popular models show the practicality of the approach.
A Bayesian Model for Sparse Graphs with Flexible Degree Distribution and Overlapping Community Structure

Juho Lee
University of Oxford

We consider a non-projective class of inhomogeneous random graph models with interpretable parameters and a number of interesting asymptotic properties. Using the results of Bollobás et al. [2007], we show that i) the class of models is sparse and ii) depending on the choice of the parameters, the model is either scale-free, with power-law exponent greater than 2, or with an asymptotic degree distribution which is power-law with exponential cut-off. We propose an extension of the model that can accommodate an overlapping community structure. Scalable posterior inference can be performed due to the specific choice of the link probability. We present experiments on five different real-world networks with up to 100,000 nodes and edges, showing that the model can provide a good fit to the degree distribution and recovers well the latent community structure.
Bayesian Multivariate Factor Analysis for Evaluating the Causal Impact of Policy Interventions

Silvia Montagna
University of Turin

A problem frequently encountered in many areas of scientific research is that of estimating the impact of a non-randomised binary intervention on an outcome of interest using time-series data on units that received the intervention (‘treated’) and units that did not (‘controls’). One popular estimation method in this setting is based on the factor analysis (FA) model. The FA model is fitted to the pre-intervention outcome data on treated units and all the outcome data on control units, and the counterfactual treatment-free post-intervention outcomes of the former are predicted from the fitted model. Intervention effects are estimated as the observed outcomes minus these predicted counterfactual outcomes. We propose two extensions of the FA model for estimating intervention effects: 1) the joint modelling of multiple outcomes to exploit shared variability, and 2) an autoregressive structure on factors to account for temporal correlations in the outcome. We demonstrate that our approach improves the precision of the intervention-effect estimates both when the number of pre-intervention measurements is small and when the number of control units is small. We apply our method to estimate the impact of stricter alcohol licensing policies on alcohol-related harms.
Particle Learning for Stochastic Volatility with Leverage
Naoki Awaya
Duke University

New filtering methods are proposed for stochastic volatility models, a class of state space models for financial time series. Due to the non-linear/non-Gaussian nature of the stochastic volatility models, the on-line posterior and predictive analysis require the computation by particle filters. The new method is based on the preceding technique of particle filters, which approximates the non-linear/non-Gaussian component by the mixture of normal distributions and correct the approximation bias by the reweighting step added to the algorithm. The new algorithm of particle filter is also designed for the models including the leverage effect, i.e., the asymmetric relationship between returns and volatilities, which has been observed in many time series of financial assets. Numerical studies show that the new methods correctly estimate the posterior and the correction step improves the accuracy of posterior analysis.

Large-Scale Dynamic Predictive Regressions
Kenichiro McAlinn
The University of Chicago

We develop a novel “decouple-recouple” dynamic predictive strategy and contribute to the literature on forecasting and economic decision making in a data-rich environment. Under this framework, clusters of predictors generate different latent states in the form of predictive densities that are later synthesized within an implied time-varying latent factor model. As a result, the latent inter-dependencies across predictive densities and biases are sequentially learned and corrected. Unlike sparse modeling and variable selection procedures, we do not assume a priori that there is a given subset of active predictors, which characterize the predictive density of a quantity of interest. We test our procedure by investigating the predictive content of a large set of financial ratios and macroeconomic variables on both the equity premium across different industries and the inflation rate in the U.S., two contexts of topical interest in finance and macroeconomics. We find that our predictive synthesis framework generates both statistically and economically significant out-of-sample benefits while maintaining interpretability of the forecasting variables. In addition, the main empirical results highlight that our proposed framework outperforms both LASSO-type shrinkage regressions, factor based dimension reduction, sequential variable selection, and equal-weighted linear pooling methodologies.
Randomization Tests of Causal Effects Under General Interference

David Puelz
The University of Chicago

We develop an approach for estimating causal effects under general interference structures between units that is built upon the classical Fisher test (1935). The null hypothesis is viewed as implying a bipartite graphical structure between units and assignments, and we find bicliques within this structure to impute potential outcomes and run valid tests. The method is applied to a unique randomized experiment for combating crime in Medellin, Colombia. We also discuss extending the Fisher test to settings where potential outcomes are modeled with Bayesian additive regression trees.
Bayesian Joint Analysis Using a Semiparametric Latent Variable Model with Non-ignorable Missing Covariates for CHNS Data

Zhihua Ma
Jinan University

Motivated by the China Health and Nutrition Survey (CHNS) data, a semiparametric latent variable model with a Dirichlet Process (DP) prior on the latent variable is proposed to jointly analyze mixed binary and continuous responses. Non-ignorable missing covariates are considered through a missing covariate model and a missing data mechanism model. The logarithm of the pseudo-marginal likelihood (LPML) is applied for selecting the priors, and the deviance information criterion (DIC) measure focusing on the missing data mechanism model is used for choosing different missing data mechanisms. A Bayesian index of local sensitivity (ISNI) is extended to explore the local sensitivity of the parameters in our model. A simulation study is carried out to examine the empirical performance of the proposed methodology. Finally, the proposed model and the ISNI index are applied to analyze the CHNS data in the motivating example.

A Bayesian Joint Model of Mark and Intensity of Marked Spatial Point Processes with Application to Basketball Shot Chart

Guanyu Hu
University of Connecticut

The success rate of a basketball shot may be higher at locations in the court where a player makes more shots. In a marked spatial point process model, this means that the marks are dependent on the intensity of the process. We develop a Bayesian joint model of the mark and the intensity of marked spatial point processes, where the intensity is incorporated in the model of the mark as a covariate.
Further, we allow variable selection through the spike-slab prior. Inferences are developed with a Markov chain Monte Carlo algorithm to sample from the posterior distribution. Two Bayesian model comparison criteria, the modified Deviance Information Criterion and the modified Logarithm of the Pseudo-Marginal Likelihood, are developed to assess the fit of different joint models. The empirical performance of the proposed methods are examined in extensive simulation studies. We apply the proposed methodology to the 2017–2018 regular season shot data of four professional basketball players in the NBA to analyze the spatial structure of shot selection and field goal percentage. The results suggest that the field goal percentages of three players are significantly positively dependent on their shot intensities, and that different players have different predictors for their field goal percentages.

Electricity Price Modelling with Stochastic Volatility and Jumps: An Empirical Investigation

Katja Ignatieva
University of New South Wales

Over the past few years, the electricity derivatives market has experienced a substantial growth in the volume of trade and the diversity of available products. This has led to a rich data environment that requires more sophisticated and accurate modelling approaches for electricity spot prices. This paper deals with an analysis of continuous-time stochastic volatility jump-diffusion processes in the context of pricing of futures contracts written on electricity spots. We formulate a variety of nested models which aim to capture the most prominent characteristics and stylised facts of the electricity spot market including mean reversion, seasonality, extreme volatility, and spikes. The proposed modelling framework extends the existing models by incorporating mean reversion, stochastic volatility, and jumps in both the underlying spot price process and its volatility. The modelling parameters are estimated using the Markov Chain Monte Carlo (MCMC) technique for the Australian electricity market. We find that incorporating stochastic volatility and jumps in both the underlying electricity spot price and its volatility is absolutely essential to accurately fit the observed electricity spot prices. We derive futures prices in a semi-closed form and confirm flexibility of the proposed models by their ability to fit the observed spot and futures prices in the Australian electricity market.
[Session 3b] Recent Developments in High-dimensional Bayesian Inference

Organizer
Shintaro Hashimoto, Hiroshima University

Session Chair
Shintaro Hashimoto, Hiroshima University

Robust Bayesian Regression with Shrinkage Priors
Shonosuke Sugasawa
The University of Tokyo

When the number of covariates is large compared with a sample size, shrinkage estimation of coefficients in regression models is known to be useful. However, shrinkage methods under parametric assumptions would be influenced by outliers. While several robust methods have been proposed based on frequentist approaches, Bayesian methods would be more preferable in terms of easiness of uncertainty quantification of the shrinkage estimation as well as reasonable choice of tuning parameters by assigning prior distributions. We develop a robust Bayesian method based on quasi-posterior distribution with shrinkage priors for regression coefficients, and provide an efficient method for posterior computation. The proposed method is demonstrated via numerical studies based on synthetic and real datasets.

The Berry-Esseen Type Bound for the Bernstein-von Mises Theorem in Moderately High Dimensions
Keisuke Yano
The University of Tokyo

We present the Berry-Esseen bound on the Bernstein-von Mises theorem in approximately liner regression models with moderately high dimensions. Specifically, we work with quasi-Bayesian approaches to handle possibly non-Gaussian error terms. We apply our bound to the finite sample evaluation of the frequentist coverage errors of Bayesian credible sets. In particular, our bound implies that Castillo-Nickl credible bands in Gaussian white noise models and linear inverse problems have coverage errors (for the true function) decaying polynomially fast in the sample size. This result shows advantages of Bayesian credible bands over confidence bands based on extreme value theorem. This talk is based on the joint work with Kengo Kato (Cornell University).
Singular Value Shrinkage Priors for Bayesian Prediction
Takeru Matsuda
The University of Tokyo

We develop singular value shrinkage priors for the mean matrix parameters in the matrix-variate normal model with known covariance matrices. Our priors are superharmonic and put more weight on matrices with smaller singular values. They are a natural generalization of the Stein prior. Bayes estimators and Bayesian predictive densities based on our priors are minimax and dominate those based on the uniform prior in finite samples. In particular, our priors work well when the true value of the parameter has low rank.

The Laplace Approximation to a High Dimensional Model
Yoichi Miyata
Takasaki City University of Economics

For recent years, much attention has been paid on high dimensional models, in which the dimension of a parameter vector grows with the sample size, in the both fields of Bayesian and frequentist statistics. To evaluate each of those models, its marginal likelihood could be one of useful tools. In this talk, we consider a high dimensional linear model in which the number of covariates increase with the sample size, and a prior density with the Laplace distribution having a nondifferentiable point. Then, the Laplace approximation using the LASSO (Least Absolute Shrinkage and Selection Operator) estimator is derived for the marginal likelihood under some suitable conditions. Furthermore, we use this approximation to present a way to implement an importance sampling method effectively.
We revisit the framework of Barillas and Shanken (2018) (BS henceforth) to point out that the Bayesian marginal likelihood based model comparison method in that paper is unsound. We show that in this asset pricing comparison, the priors on the nuisance parameters across models must satisfy a certain change of variable property for densities, summarized in Proposition 2, that is violated by the off-the-shelf Jeffreys priors used in the BS method. Hence, the BS “marginal likelihoods” are non-comparable across models and cannot be used to locate the risk factors. We conduct extensive simulation exercises in two designs: one with 8 potential pricing factors and a second with 12 factors, in each case matching the factors to real world factors that arise in this setting. The empirical performance of the BS method is shown to be dismal, even when epic (and practically unattainable) sample sizes of .12 and 1.2 million are used to conduct the model comparisons. In a notable advance with many practical ramifications, we derive a new class of improper priors on the nuisance parameters that satisfy our Proposition 2, leading to valid marginal likelihoods, and valid model comparisons. The empirical performance of our new marginal likelihoods is stunningly different. Our method open doors to a new exciting wave of reliable Bayesian work on the comparison of asset pricing models.
A New Monte Carlo Method for Estimating Marginal Likelihoods

Lynn Kuo
University of Connecticut

Evaluating the marginal likelihood in Bayesian analysis is essential for model selection. There are existing estimators based on a single Markov chain Monte Carlo sample from the posterior distribution, including the harmonic mean estimator and the inflated density ratio estimator. We propose a new class of Monte Carlo estimators based on this single Markov chain Monte Carlo sample. This class can be thought of as a generalization of the harmonic mean and inflated density ratio estimators using a partition weighted kernel (likelihood times prior). We also show that our estimator is consistent and has better theoretical properties than the harmonic mean and inflated density ratio estimators. In addition, we provide guidelines on choosing the optimal weights. A simulation study is conducted to examine the empirical performance of the proposed estimator. We further demonstrate the desirable features of the proposed estimator with two real data sets: one is from a prostate cancer study using an ordinal probit regression model with latent variables; the other is for the power prior construction from two Eastern Cooperative Oncology Group phase III clinical trials using the cure rate survival model with similar objectives.

Inflated Density Ratio and Its Variation and Generalization for Computing Marginal Likelihoods

Yu-Bo Wang
Clemson University

In the Bayesian framework, the marginal likelihood plays an important role in variable selection and model comparison. The marginal likelihood is the marginal density of the data after integrating out the parameters over the parameter space. However, this quantity is often analytically intractable due to the complexity of the model. In this paper, we first examine the properties of the inflated density ratio (IDR) method, which is a Monte Carlo method for computing the marginal likelihood using a single MC or Markov chain Monte Carlo (MCMC) sample. We then develop a variation of the IDR estimator, called the dimension reduced inflated density ratio (Dr.IDR) estimator. We further propose a more general identity and then obtain a general dimension reduced (GDr) estimator. Simulation studies are conducted to examine empirical performance of the IDR estimator as well as the Dr.IDR and GDr estimators. We further demonstrate the usefulness of the GDr estimator for computing the normalizing constants in a case study on the inequality-constrained analysis of variance.
Monte Carlo Methods for Computing Marginal Likelihoods with Applications to Item Response Theory Models

Ming-Hui Chen
University of Connecticut

Nowadays, Bayesian methods are routinely used for estimating parameters of item response theory (IRT) models. However, the marginal likelihoods are still rarely used for comparing IRT models due to their complexity and a relatively high dimension of the model parameters. In this paper, we review Monte Carlo (MC) methods developed in the literature in recent years and provide a detailed development of on how these methods are applied to the IRT models. In particular, we focus on the “best possible” implementation of these MC methods for the IRT models. These MC methods are used to compute the marginal likelihoods under the one-parameter IRT model with the logistic link (1PL model) and the two-parameter logistic IRT model (2PL model) for a real English Examination dataset. We further use the widely applicable information criterion (WAIC) and deviance information criterion (DIC) to compare the 1PL model and the 2PL model. The 2PL model is favored by all of these three Bayesian model comparison criteria for the English Examination data.
Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models

Dipak K. Dey
University of Connecticut

Missing data often appear as a practical problem while applying classical models in the statistical analysis. Here, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another on Auto-mpg data.
Bayesian Learning in High-dimensional State-space Models

Hedibert Freitas Lopes
INSPER Institute of Education and Research

Applied Bayesian Statistics has benefited greatly from the avalanche of Monte Carlo-based tools for approximate posterior inference in highly complex and structured scientific models. From environmental and health studies to financial applications, virtually all areas of science where evidence-based scrutiny is mandatory to validate scientific hypotheses have benefitted from such technological explosion.

My research also exemplifies these trends. I will discuss work on high-dimensional state-space models with particular attention to time-varying covariance learning. In one direction, my co-authors and I deal with the curse of dimensionality via parameter reduction, such as those found in the factor modelling literature. In another direction, we heavily regularize the estimation of parameters. I will review the challenges we faced when dealing with such high-dimensional state-space models. Two or three motivating examples from my recent research will be used throughout the talk. I finish with a few directions of my future research in these and related areas.
A Semiparametric Mixture Method for Local False Discovery Rate Estimation from Multiple Studies

Woncheol Jang
Seoul National University

We propose a two-component semiparametric mixture model to estimate local false discovery rates in multiple testing problems. The two pillars of the proposed approach are Efron’s empirical null principle and log-concave density estimation for the alternative distribution. Our method outperforms other existing methods, in particular when the proportion of null is not that high. It is robust against the misspecification of alternative distribution. A unique feature of our method is that it can be extended to compute the local false discovery rates by combining multiple lists of p-values. We demonstrate the strengths of the proposed method by simulation and several case studies.

Variational Inference for the Levy Adaptive Regression with Multiple Kernels

Seongil Jo
Chonbuk National University

This paper presents a variational Bayes approach to a Levy adaptive regression kernel (LARK) model that represents functions with an overcomplete system. In particular, we develop a probabilistic variational inference method for a LARK model with multiple kernels (LARMuK) which estimates arbitrary functions that could have jump discontinuities. The algorithm is based on a variational Bayes method with simulated annealing. We compare the proposed algorithm to a simulation-based reversible jump Markov chain Monte Carlo (RJMCMC) method using numerical experiments and discuss its potential and limitations.
Analysis of Longitudinal Binary and Survival Time Data Using Joint Models with General Random Effects Covariance Matrix

Keunbaik Lee
Sungkyunkwan University

In clinical trials, longitudinal data are collected repeatedly over time. However, these data have a tendency to show many missing values because of censoring problems, and these missing values are not negligible. In order to address this problem, this paper deals with joint models of longitudinal data and survival data. In the process, generalized linear mixed model (GLMM) is used as longitudinal sub-model and survival sub-model is Cox proportional hazard model. Moreover, random effects are used to account for association between the longitudinal and survival models. However, estimation of the random effects covariance matrix is not easy because the matrix is high-dimensional, and the matrix should be positive definite. In this regard, modified Cholesky decomposition (MCD) is utilized to overcome the limitation of the random effects covariance matrix estimation. In real data study, Markov Chain Monte Carlo algorithm is used to verify parameters. We employ random-walk Metropolis Hastings algorithm to estimate parameters and random effects. CD4 cell count data, which is related to HIV, is analyzed.

Post-processed Posteriors for Band Structured Covariances

Jaeyong Lee
Seoul National University

We consider two classes of band structured covariances, classes of banded and bandable covariances. Due to the difficulty of constructing priors with computational efficiency and theoretical optimality, Bayesian inference for band structured covariances remains elusive. In this paper, we propose post-processed posteriors for the banded and bandable covariances. The post-processed posterior is obtained by post-processing the conjugate inverse-Wishart posterior for the covariance without any structural restriction. The structural restriction of the posterior is satisfied by the post-processing. We show that the proposed post-processed posteriors have optimal minimax rate for the bandable covariances and nearly optimal minimax rate for banded covariances. A simulation study and a real data analysis are given.
Use of Two Non-informative Priors in an Empirical Bayes Estimator of Multiple Poisson Means

Takemi Yanagimoto1 and Toru Ogura2

1The Institute of Statistical Mathematics; 2Mie University

The simultaneous estimation problem of the multiple Poisson means arises often in various application fields including epidemiological studies. It looks obvious that the empirical Bayesian approach is promising. However, there exist many to be done to construct an explicit form of this estimator. Let x be a sample of size 1 from the Poisson density $Po(\lambda)$. Our preliminary studies indicate that the posterior mean of the canonical parameter $\theta = \log \lambda$ under the reference prior performs better than the maximum likelihood estimator (MLE) and also than the traditional Bayesian estimator. In order to develop this observation further, we attempt to construct the empirical Bayes method for estimating $K (\geq 2)$ means in independent Poisson densities $Po(\lambda_k)$’s. A family of conjugate prior densities of the form

$$P = \{\pi(\lambda; m, \delta) = \exp\{-\delta D(m, \lambda)\} b(\lambda) k(m, \delta) | \delta \geq 0\}$$

(1)

is assumed, where $D(\cdot, \cdot)$ denotes the Kullback-Leibler divergence. Our primary interest is in the choice of the supporting density of the form

$$b(\lambda) = \lambda^{a-1}.$$

(2)

Specifically, the cases of $a = 0$ and 0.5 in (2) attract our attention. When $\delta = 0$, they are familiar non-informative prior densities for θ as the uniform and the reference prior densities, respectively. As in the usual empirical Bayes method, the hyperparameters m and δ are determined by maximizing the marginal likelihood, and the mean parameters λ_k’s are estimated through the posterior means of θ_k’s under the given determined hyperparameters. We conduct numerical and simulation comparison studies of selected empirical Bayes estimators, including the use of two different priors for estimating the hyperparameters and the multiple Poisson means. The studies indicate that the empirical Bayes estimator under the uniform prior for
Bayesian Methods for Accelerated Materials Discovery
Ryo Yoshida
The Institute of Statistical Mathematics

The ability of machine learning (ML) models, which are trained on massive amounts of data, has reached or even outperformed humans in intellectually demanding tasks across various fields. As such, ML has received much attention as a key driver to the next frontier of materials science, which can contribute to substantial savings, in terms of both time and costs that are involved in the development of new materials. In this talk, I will describe some key drivers of ML technologies to achieve this goal.

The first topic is the ML-assisted materials design. In general, the material spaces are considerably high-dimensional. For instance, the chemical space of small organic molecules is known to contain as many as 10^{60} candidates. The problem entails a considerably complicated combinatorial optimization where it is impractical to fully explore the vast landscape of structure-property relationships. The aim of this study is to create a novel material design method by the integration of machine learning and quantum chemistry calculation. The method begins by obtaining a set of machine learning models to forwardly predict properties of input material structures for multiple design objectives. These models are inverted to the backward model through Bayes’ law. Then we have a posterior probability distribution which is conditioned by desired properties. Exploring high probability regions of the posterior, it is expected to identify new materials possessing the desired target properties. The emergence of such ML algorithms to exhaustively search in such a
huge space is expected to accelerate the pace of expanding the frontier in the vast universe of materials. Under industry-academia partnerships, we are putting into practice this Bayesian material design method.

The second topic is a subject of data scarcity. There are growing needs for the use of ML to derive fast-to-evaluate surrogate models for materials properties. In recent years, a broad array of materials property databases has begun to emerge towards digital transformation of materials science. However, the volume and diversity of materials data remain far from fully enjoying technological advances recently made in ML. A ML framework called transfer learning has the great potential to break the barrier of limited amounts of materials data in which various kinds of properties are physically interrelated. For a given target property to be predicted from a limited supply of training data, models on related proxy properties are pre-trained using an enough amount of data, which capture common features relevant to the target task. Re-purposing such machine-acquired features on the target task brings an outstanding achievement in the prediction performance even with exceedingly small data as if highly experienced human experts can perform rational inferences even on considerably less experienced tasks. To facilitate the widespread use of transfer learning, we have developed a pre-trained model library, called XenonPy.MDL. In this first release, the library constitutes more than 100,000 pre-trained models for various properties of small molecules, polymers, and inorganic solid-state materials. Along with this library, I will demonstrate some outstanding successful applications of transfer learning.

References
3. iQSPR: https://github.com/yoshida-lab/iqsprr
are estimated through a mutual learning loop of the variational autoencoder and our previously proposed HDP-GP-HSMM. Hence, HVGH can extract features from high-dimensional time-series data, while simultaneously dividing it into segments in an unsupervised fashion. In an experiment, we used various motion-capture data to show that our proposed model estimates the correct number of classes and more accurate segments than baseline methods. Moreover, we show that the proposed method can learn latent compressed space suitable for segmentation. This is a joint work with Masatoshi Nagano, Tomoaki Nakamura (The University of Electro-Communications), Takayuki Nagai, Wataru Takano (Osaka University), and Ichiro Kobayashi (Ochanomizu University).
Quantile Forecasting Based on a Multivariate Hysteretic Autoregressive Model with GARCH Errors and Time-varying Correlations

Cathy W.S. Chen
Feng Chia University

To understand and predict chronological dependence in the second-order moments of asset returns, we consider a multivariate hysteretic autoregressive (HAR) model with GARCH specification and time-varying correlations, by providing a new way to describe a nonlinear dynamic structure of the target time series. The hysteresis variable governs the nonlinear dynamics of the proposed model in which the regime switch can be delayed if the hysteresis variable lies in a hysteresis zone. The proposed model combines on three useful model components for modeling economic or financial data: (1) the multivariate HAR model, (2) the asymmetric multivariate volatility models, and (3) a dynamic conditional correlation structure. We incorporate an adapted multivariate Student-t innovation based on a scale mixture normal presentation in the HAR model to tolerate for dependence and different shaped innovation components. We carry out multivariate volatilities, Value-at-Risk, and marginal expected shortfall based on a Bayesian sampling scheme through adaptive Markov chain Monte Carlo (MCMC) methods, which allow us to statistically estimate all unknown model parameters and forecasts simultaneously. We illustrate the proposed methods herein by using both simulated and real examples and measure for industry downside tail risk jointly.
Bayesian Analysis of Realized Matrix-Exponential GARCH Models
Manabu Asai
Soka University

The paper develops a new realized matrix-exponential GARCH (MEGARCH) model, which uses the information of returns and realized measure of co-volatility matrix simultaneously. The paper also considers an alternative multivariate asymmetric function to develop news impact curves. We consider Bayesian MCMC estimation to allow non-normal posterior distributions, and illustrate the usefulness of the algorithm with numerical simulations for two assets. For three US financial assets, we compare the realized MEGARCH models with existing multivariate GARCH class models. The empirical results indicate that the realized MEGARCH models outperform the other models regarding in-sample and out-of-sample performance. The news impact curves based on the posterior densities provide reasonable results.

A Generalized Threshold Stochastic Volatility Model Incorporating with Realized Measures
Feng-Chi Liu
Feng Chia University

A generalized threshold stochastic volatility (THSV) model jointly modeled with realized measures (RMs) is considered in this study. Advancing from trading technology, high frequency data is used to construct RMs for accurate volatility forecasting. This study proposes a threshold-type RM equation to jointly model with a generalized THSV model. Based on the Bayesian approach, parameters of the proposed model are estimated by the designed Markov chain Monte Carlo method. In the real data analysis, we employ the risk measures of value-at-risk (VaR) and expected shortfall (ES) to evaluate the performance of volatility forecasting. The results show that the proposed model can produce more accurate volatility forecasting than the model with a simple RM equation.
Nonparametric Bayesian Two-part Random Effects Model for Longitudinal Semi-continuous Data Analysis

Yeongseung Chung
Korea Advanced Institute of Science and Technology

Longitudinal semi-continuous data are frequently encountered in many fields of research. Two-part random effects model (TP-REM) has been widely used to analyze the semi-continuous data and covariates. The TP-REM separates the semi-continuous data into the binary and continuous parts, and fits random effects regression to each part separately. The existing TP-REM typically assumes that the random effects follow a normal distribution, which is limited to flexibly characterize the between-subject heterogeneity and identify the underlying subpopulation structure. Moreover, the existing model incorporates covariates in parametric manners, and time-varying covariates in a limited way that their effects do not change over time. Motivated by these limitations, we propose a novel nonparametric Bayesian two-part random effects model for analyzing longitudinal semi-continuous data and various types of covariates. In the proposed model, we depict the longitudinal trajectories of the binary and continuous parts separately using splines with subject-specific basis coefficients (i.e., random effects). Then, the random effects from both parts are jointly modeled using a Dirichlet process mixture of normals to account for the between-part correlations and identify the subpopulation structure. Furthermore, the random effects are associated with different types of covariates in a nonparametric manner, so that complex relationships between longitudinal semi-continuous data and time-fixed or time-varying covariates are modeled. The method is illustrated through a simulation study and is applied to the social insurance expenditure data obtained from the KWEPS study.

Coauthor: Jinsu Park, Korea Advanced Institute of Science and Technology
Use of Model Reparametrization to Improve Variational Bayes

Linda S. L. Tan
National University of Singapore

We propose using model reparametrization to improve variational Bayes inference for a class of models whose variables can be classified as global (common across observations) or local (observation specific). Posterior dependency between local and global variables is reduced by applying an invertible affine transformation on the local variables. The functional form of this transformation is deduced by approximating the posterior distribution of each local variable conditional on the global variables by a Gaussian distribution via a second order Taylor expansion. Variational Bayes inference for the reparametrized model is then obtained using stochastic approximation. Our approach can be readily extended to large datasets via a divide and recombine strategy. Using generalized linear mixed models, we demonstrate that reparametrized variational Bayes provides improvements in both accuracy and convergence rate compared to state of the art Gaussian variational approximation methods.

Nonparametric Bayesian Modeling in Government Statistics: Recent Developments in Imputation, Editing, and Data Protection

Hang J. Kim
University of Cincinnati

Federal statistical agencies are demanded to disseminate accurate data to the public while information provided by survey respondents often suffer from a large amount of incorrect and missing responses. Increasing concern about disclosing identities of individuals and their sensitive data is a relatively new assignment imposed on the statistical agencies. In the last five years, nonparametric Bayesian modeling has been suggested as a solution to address the multiple, competing goals in data dissemination. In this talk, we will review recent developments in nonparametric Bayesian modeling for government statistics, which is able to (a) capture a flexible joint distribution for the underlying true values of the input data, (b) account for uncertainty introduced during the data dissemination process, and (c) generate synthetic data for privacy protection. The talk will also introduce several potential applications and future research topics including differential privacy and the impact of sampling design information on data protection.
Estimation and Prediction for Spatial Generalized Linear Mixed Models

Vivekananda Roy
Iowa State University

Spatial generalized linear mixed models (SGLMMs) are popular for analyzing non-Gaussian spatial data. Some popular link functions, such as the Box-Cox, used in SGLMMs are inappropriate because they are inconsistent with the Gaussian assumption of the spatial field. We present sensible choices of parametric link functions which possess desirable properties. It is important to estimate the parameters of the link function and spatial covariance, rather than assume known values. To that end, we present efficient generalized importance sampling estimators based on multiple Markov chains and suitable reparameterizations for empirical Bayes analysis of SGLMMs. We develop a methodology for selecting models with appropriate link function family, which extends to choosing a spatial correlation function as well. We present an ensemble prediction of the mean response by appropriately weighting the estimates from different models. The proposed methodology is illustrated using simulated and real data examples.
A Bayesian Approach for Spatial Cluster Detection of Regression Coefficients

Huiyan Sang
Texas A&M University

In this work, we propose a new Bayesian spatially clustered coefficient (BSCC) regression model, to detect spatial clustering patterns in the associations between response variables and covariates. In BSCC, regression coefficients are assumed to be constants within each spatially contiguous cluster. To model the clustering patterns, we develop a novel and flexible space partitioning prior based on Euclidean spanning trees, which is capable of capturing irregularly shaped clusters. An efficient Reversible Jump Markov chain Monte Carlo (MCMC) algorithm is designed to estimate the clustered coefficient values and their uncertainty measures. Finally, we illustrate the performance of the model with simulation studies and a real data analysis of temperature-salinity relationship in the Atlantic Ocean.

A Bayesian Approach to Assess Intervention Effects on Opiate Overdose Incidents in Space and Time

Richard Zehang Li
Yale University

Opioid use and overdose have become an important public health issues in the United States. However, understanding the spatial and temporal dynamics of opioid overdose incidents and effects of public health interventions and policy changes can be challenging. Effects may be heterogeneous across space and time, and may exhibit spillover into regions in which the intervention did not take place. Using a publicly available dataset consisting of the time/date, location, and nature of heroin-related emergency calls in the city of Cincinnati, Ohio, we propose a Bayesian hierarchical model to characterize and predict the risks of overdose incidents in small areas over time, incorporating geographic, social, and demographic covariates. We characterize the predictive performance of this model, and outline a framework for estimating causal impacts of public health interventions in spatial-temporal settings. We discuss assumptions and interpretations for the causal effect estimated using the proposed mixed-effect model approach.
Bayesian Generalized Regression Models with Gaussian Process Priors

Xia Wang
University of Cincinnati

In many scientific fields, it is a common practice to collect a sequence of categorical responses, binary or ordinal, across time, space, or along with a collection of covariates. Researchers are interested in finding out how the expected outcome is related to covariates, and aim at better prediction in the future categorical outcomes. It is critical to appropriately modeling three important components in the generalized regression model, including the link function, the systematic component and the random effects. We propose a flexible generalized regression model with families of parametric link functions and a Gaussian process prior on the latent structure. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. Gaussian processes have been widely used to model nonlinear systems or dependence structure. Extensive simulation studies and real data applications show that the combination of the parametric link functions and the non-parametric Gaussian process leads to a family of very flexible generalized regression models. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated in the binary response case.
Sparse Minimax Optimality of Bayes Predictive Density Estimates from Clustered Discrete Priors

Gourab Mukherjee
University of Southern California

We consider the problem of predictive density estimation under Kullback-Leibler loss in a high-dimensional Gaussian model with exact sparsity constraints on the location parameters. We study the first order asymptotic minimax risk of Bayes predictive density estimates based on product discrete priors where the proportion of non-zero coordinates converges to zero as dimension increases. Discrete priors that are product of clustered univariate priors provide a tractable configuration for diversification of the future risk and are used for constructing efficient predictive density estimates. We establish that the Bayes predictive density estimate from an appropriately designed clustered discrete prior is asymptotically minimax optimal. The marginals of our proposed prior have infinite clusters of identical sizes. The within cluster support points are equi-probable and the clusters are periodically spaced with geometrically decaying probabilities as they move away from the origin. The cluster periodicity depends on the decay rate of the cluster probabilities. Under moderate sparsity, through numerical experiments, we compare the maximal risk of the Bayes predictive density estimates from such clustered prior with varied competing estimators and obtain encouraging results.
Asymptotic Properties of Bayes Estimators Based on Shrinkage Priors for Curved Exponential Families

Michiko Okudo
University of Tokyo

We investigate asymptotic properties of plug-in distributions with Bayes estimators for curved exponential families. We consider orthogonal shift of plug-in distributions in direction orthogonal to the curved exponential family and parallel to the full exponential family. It is shown that plug-in distributions with asymptotically efficient estimators can be improved in terms of Kullback-Leibler risk by shifting them in those directions. It is also shown that the optimal shift coincides with the shift from the plug-in distribution with Bayes estimator for the curved exponential family to the plug-in distribution with Bayes estimator for the full exponential family. We also consider priors for curved exponential families and show the condition where shrinkage priors dominate Jeffreys prior.

Dual Roles of Maximizing Likelihood and Shannon Entropy under Alpha-divergence Loss

Toshio Ohnishi
Kyushu University

The maximization of the likelihood and that of the Shannon entropy are the most famous principles in statistical inference. This paper reveals notable duality of these two important notions under alpha-divergence loss function in the Bayesian prediction problem. The best prediction is obtained by maximizing the likelihood and the Shannon entropy respectively for alpha in [-1, 1) and for alpha = 1. The minimum prediction in the sense that it derives the worst member of a class of predictors is derived by maximizing the Shannon entropy and the likelihood respectively for alpha = -1 and for alpha in (-1, 1].
Analysis of Markov Chain Monte Carlo Method with Heavy-tailed Target Distributions

Kengo Kamatani
Osaka University

In this talk, we will discuss Markov chain Monte Carlo (MCMC) methods with heavy-tailed invariant probability distributions. When the invariant distribution is heavy-tailed the algorithm has difficulty reaching the tail area. We will study the effect by using the high-dimension scaling limit. We also study ergodic properties of some MCMC methods with heavy-tailed invariant distributions.

Bayesian Inference for Intractable Likelihood Models

Krzysztof Latuszyński
Warwick University

Constructing MCMC algorithms for Bayesian inference in intractable likelihood models is problematic since difficulties in evaluating the likelihood make the application of the standard Metropolis-Hastings acceptance formula impossible. This enforces either (1) approximate methods that introduce bias of unknown magnitude, or (2) the pseudomarginal approach that is exact, but slows down MCMC convergence, sometimes dramatically. In this talk I will present a new approach (3) based on unbiased estimators of the likelihood and the Barkers acceptance ratio. The approach is exact and retains the per iteration convergence rate comparable to that of the standard Metropolis-Hastings. I will illustrate the approach with examples of exact inference for stochastic differential equations.

This is joint work with Flavio Goncalves, Gareth Roberts and Dootika Vats.
Randomized Hamiltonian Monte Carlo as Scaling Limit of the Bouncy Particle Sampler

Daniel Paulin
Oxford University

The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane tangent to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of an homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques.

Joint work with George Deligiannidis, Arnaud Doucet and Alexandre Bouchard-Côté.
Bayesian Model Selection for Nonparametric Problems

Debdeep Pati
Texas A&M University

In this talk, we investigate large sample properties of model selection procedures in a nonparametric Bayesian framework when a closed form expression of the marginal likelihood function is not available or a local asymptotic quadratic approximation of the log-likelihood function does not exist. Under appropriate identifiability assumptions on the true model, we provide sufficient conditions for a Bayesian model selection procedure to be consistent and obey the Occam’s razor phenomenon, i.e., the probability of selecting the “smallest” model that contains the truth tends to one as the sample size goes to infinity. In order to show that a Bayesian model selection procedure selects the smallest model containing the truth, we impose a prior anti-concentration condition, requiring the prior mass assigned by large models to a neighborhood of the truth to be sufficiently small. In a more general setting where the strong model separation gap assumption may not hold, we introduce the notion of local Bayesian complexity and develop oracle inequalities for Bayesian model selection procedures. Our Bayesian oracle inequality characterizes a trade-off between the approximation error and a Bayesian characterization of the local complexity of the model, illustrating the adaptive nature of averaging-based Bayesian procedures towards achieving an optimal rate of posterior convergence. Specific applications of the model selection theory are discussed in the context of high-dimensional nonparametric regression and density regression where the regression function or the conditional density is assumed to depend on a fixed subset of predictors. As a result of independent interest, we propose a general technique for obtaining upper bounds of certain small ball probability of stationary Gaussian processes.
Bayesian Nonparametric Clustering Analysis for Single Cell RNA Sequencing Data

Mengjie Chen
University of Chicago

Single cell RNA sequencing (scRNAseq) technique has emerged as a powerful tool in genomics. scRNAseq is capable of providing gene expression measurements at single cell level and at genome-wide scale, thus allowing in-depth characterization of a potentially heterogeneous cell population. A key analytic task in scRNAseq involves classifying cells into sub-populations, which requires the development of statistical methods that can perform effective and accurate unsupervised clustering. However, standard clustering methods are not directly applicable to scRNAseq data, as these methods often fail to account for the high measurement noise and an abundance of drop-out events encountered in scRNAseq data, which are results of the low capture efficiency and low amount of input material in scRNAseq. Here, we present a Bayesian nonparametric method that is tailored for clustering analysis in scRNAseq. Our method accounts for both high measurement noise and drop-out events, and is capable of automatically inferring the number of cell sub-populations from the data at hand. Our method incorporates the sparse factor model and the Dirichlet process normal mixture clustering model into a same joint framework, and effectively performs clustering on a low dimensional informative manifold inferred from the noisy data – thus enabling accurate clustering performance. To make our method scalable, we also develop a computationally efficient variational algorithm for model inference. With extensive simulations and a real data application, we show that our method outperforms several competing methods in clustering scRNAseq data.

Bayesian Estimation of Sparse Spiked Covariance Matrices in High Dimensions

Yanxun Xu
Johns Hopkins University

We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is re-parametrized in terms of the latent factor model, where the loading matrix is equipped with a novel matrix spike-and-slab LASSO prior, which is a continuous shrinkage prior for modeling jointly sparse matrices. We establish the rate-optimal posterior contraction for the covariance matrix with respect to the operator norm as well as that for the principal subspace with respect to the projection operator norm loss. We also study the posterior contraction rate of the principal subspace with respect to the two-to-infinity norm loss, a novel loss function measuring the distance between subspaces that is able to capture element-wise eigenvector perturbations. We show that the posterior contraction rate with respect to the two-to-infinity norm loss is tighter than that with respect to the routinely used projection operator norm loss under certain low-rank and bounded coherence conditions. In addition, a point
estimator for the principal subspace is proposed with the rate-optimal risk bound with respect to the projection operator norm loss. These results are based on a collection of concentration and large deviation inequalities for the matrix spike-and-slab LASSO prior. The numerical performance of the proposed methodology is assessed through synthetic examples and the analysis of a real-world face data example.

Bayesian Generative Training is Robust

Chao Gao

University of Chicago

In this talk, I will discuss a Bayesian training procedure that is inspired by ABC (approximate Bayesian computation) and GAN (generative adversarial nets). I will discuss the robustness property of the posterior distribution compared with classical Bayesian methods that use explicit likelihood functions.
Bayesian Estimation of Population Moments and Parameters in Biased Sampling

Yuya Shimizu
Keio University

We propose an estimation method of population moments or parameters in “biased sampling data” in which for some units of data, not only the variable of interest but also the covariates, have missing observations and the proportion of “missingness” is unknown. We use auxiliary information such as the distribution of covariates or their moments in random sampling data in order to correct the bias. Moreover, with additional assumptions, we can correct the bias even if we have only the moment information of covariates. The main contribution of this research is the development of a Bayesian estimator for biased sampling data. For example, the customer data of a company can be considered as this biased sampling data when the researcher cannot observe the unit-level data of other companies, and only obtains the customer data of a company; however, the researcher can often obtain census data as auxiliary information, and can correct the bias by using the proposed method. Both the simulation and empirical application for the marketing data demonstrate that the proposed estimation method can correct the bias.

This is joint work with Takahiro Hoshino (Keio University).
Modeling Heterogeneous Impacts of Mental Accounting and Household Stock to Consumers Inter-shopping Duration

Kazuhiro Miyatsu
Nielsen Company Japan

Consumers do not always behave as rationally as to maximize their utilities, but they often take actions in a seemingly irrational way. Behavioral economics describes such consumer anomalies with the concept of Mental Accounting. In this notion, consumers have different criteria values for goods depending on purpose of its use as well as circumstances at purchase. Our modeling of inter-shopping duration accommodates mental condition changes captured by two latent variables, i.e. mental accounting and household stock. Mental accounting is modeled as cumulative purchase amount from consumer payday until the next payday comes attempting to seize consumers pressure in spending at each occasion. Our research aims to comprehend consumer inter-shopping behaviors in four-regime dimensions where they could be seemingly irrational from traditional economics viewpoints. The model is derived from threshold-based modeling framework that incorporates consumer heterogeneity in a hierarchical Bayesian manner, and modeling parameters are estimated using Markov chain Monte Carlo (MCMC) methods. Empirical studies have been exploited with scanner panel data of a retailer shop, and results indicate that our model outperforms by having consumer mental conditions changes into consideration at time of purchase.

This is joint work with Tadahiko Sato (University of Tsukuba).

Dynamic Two-Stage Modeling for Category-Level and Brand-Level Purchases with a Bayes Inference

Kei Miyazaki
Kansai University

We propose an econometric two-stage model for category-level and brand-level purchases that allows for simultaneous brand purchases when analyzing scanner panel data. The proposed approach is consistent with the stage-wise decision process of the Engel Blackwell Miniard model, which is well established in consumer behavior theory. According to the EBM model, in the case of low-involvement products, consumers first determine whether they will make product-category purchases based on problem recognition, such as a lack of household inventory. This decision is independent of brand loyalty, utility, or preferences. Our proposed model is consistent with this idea. Such modeling approaches have not been used in econometric models. We conduct a Bayesian estimation using the Markov Chain Monte Carlo algorithm for our proposed model. In simulation studies, we showed that parameters can be recovered with good accuracy. The hit rate for the proposed model is superior to the considered alternative models. The results in real-data analysis also indicate that the proposed method outperforms all of the considered alternatives. Whereas the latter models are unable to examine switching behaviors
between the main brands and the baseline brand, the proposed model is able to do so. The proposed method can be used for other purposes beyond examining brand-switching behaviors. For example, it is possible to analyze store choice and multiple-product-category purchase data.

This is joint work with Takahiro Hoshino (Keio University) and Ulf Bockenholt (Northwestern University).
Within the framework of partial exchangeability, we review models based on dependent completely random measures (or suitable transformations thereof). Some of their marginal and conditional distributional properties are presented with focus on additive, hierarchical and nested constructions. These distributional results provide insight into the inferential implications of the considered models and allow to derive effective sampling schemes. Popular nonparametric models are obtained as special cases. Illustrations related to species sampling problems and survival analysis are provided.